Daugavet property in projective symmetric tensor products of Banach spaces

نویسندگان

چکیده

Abstract We show that all the symmetric projective tensor products of a Banach space X have Daugavet property provided has and either is an $$L_1$$ L 1 -predual (i.e., $$X^{*}$$ X ? isometric to -space) or vector-valued -space. In process proving it, we get number results independent interest. For instance, characterise “localised” versions [i.e., points $$\Delta$$ ? -points introduced in Abrahamsen et al. (Proc Edinb Math Soc 63:475–496 2020)] for -preduals terms extreme topological dual, result which allows polyhedrality real absence also provide new examples having convex diametral local diameter two property. These are applied nicely embedded spaces [in sense Werner (J Funct Anal 143:117–128, 1997)] so, particular, function algebras. Next, polynomial equivalent Lipschitz functions. Finally, improvement recent Rueda Zoca Inst Jussieu 20(4):1409–1428, 2021) about obtained.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On The Interpolation of Injective or Projective Tensor Products of Banach Spaces

We prove a general result on the factorization of matrix-valued analytic functions. We deduce that if (E0, E1) and (F0, F1) are interpolation pairs with dense intersections, then under some conditions on the spaces E0, E1, F0 and F1, we have [E0⊗̂F0, E1⊗̂F1]θ = [E0, E1]θ⊗̂[F0, F1]θ, 0 < θ < 1. We find also conditions on the spaces E0, E1, F0 and F1 , so that the following holds [E0 ∨ ⊗F0, E1 ∨ ⊗F1...

متن کامل

Denting Points in Tensor Products of Banach Spaces

Let dent A denote the set of denting points of a subset A of some Banach space. We prove dent cl co( K ® L) = dent K ® dent L for closed, bounded, absolutely convex subsets K and L of Banach spaces X and Y. Here the closure refers to the completion of X ® Y w.r.t. some reasonable crossnorm.

متن کامل

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

H-Projective Banach Spaces

and with the habitual changes in the case p = +∞. If I is a set then, l(I) denotes the Banach space L(I, ν),where ν is the counting measure. And if I is the set {1, ..., n}, the corresponding space is denoted ln . We will denote by H(X)the space of all analytic functions f : D −→ X such that ||f ||Hp(X) < +∞, with ||f ||Hp(X) = Sup {||fr||Lp(T;X) : 0 < r < 1} and fr(t) = f(rt), for all t ∈ T an...

متن کامل

^-convolution Operators and Tensor Products of Banach Spaces

intimately connected with duality theory (the notation is that of [1]). In both cases the middle algebra is the closure of L(G) in the dual of the first algebra and also the predual of the third algebra (at least when G is amenable in the second case). Furthermore, the third algebra is closely connected with the multiplier algebra of the first algebra. For abelian groups, compact or discrete, V...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Journal of Mathematical Analysis

سال: 2022

ISSN: ['1735-8787', '2662-2033']

DOI: https://doi.org/10.1007/s43037-022-00186-6